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The boundary separating the plastic and the rigid domains is determined on the 

basis of the linearized solution [l] of the problem of impressing a thin rigid body 
into a plastic medium possessing translational hardening. The case of a solid in 

the shape of a wedge is considered. In particular, the solution of the problem of 
impressing a thin wedge into an ideally plastic half-space is obtained when har- 
dening is neglected ; a comparison is made with the known solution of Hill, Lee 

and Tupper @]. 

1. Considering a plastic material to be under plane strain conditions, and directing 
the coordinate axes as shown in Fig. la, let us write the equation of the solid surface as 

Y = W (z), f (0) = 9, Fz (0) = 9 (Fi s di f / dzi) (1.1) 

where 6 is a small dimensionless parameter, and f is a sufficiently smooth function. 
The material occupies the half-space 5 < 0 at the initial instant. Reversing the motion, 
let us consider the solid fixed and the medium to move translationally upward along the 
z -axis at some constant velocity. 

Let us henceforth use the variables 

r=z-YY, g=z+y (1.2) 

in addition to the variables 2, y . 
The linearized solution of the problems has been found in [l]. It follows therefrom 

that the plastic domain AOB (Fig. 2) consists of two zones: OBC (0 < E < h) and 
ABC (h < g < 2h). The stresses on the line BC (E = h) are continuous. The equation 
of the buckiing surface of the plastic material is Cl] 

Z - h = 6f (h - y) (1.3) 

In a zero approximation the boundary separating the plastic and rigid domains is defined 
by the equation x - y = 0 (Fig. lb), which in the n, g variables has the following form: 

‘1 (E) = 6 (1.4) 



Varying (1.4), we obtain the equation of the rigid-plastic boundary in the first approxi- 
mation q + 6~’ (E) = o or in the 2, y variables 

z - y -+ 6y’ (Cc + y) = 0 0.5) 
Here the function y’ (I + y) = $ (g) is to be determined. 

The rigid-plastic boundary in the problem under consideration is a slipline ofthe second 
famity (p-line). Hence its diff~ential equation is 

d.?# i ax = - ct!AJ (1.61 

where the meaning of the angle 0 is seen from Fig. 3. Let us evaluate the derivative 
dy/dx by means of (1.5). Then (1.6) becomes 

ctge = - [I + 26r’ ($)I , I” (%I = 4 b$‘dE 0‘ 7) 

The first principal direction encloses the angle 

tg2 (1, :1.) := 2ziox - q/ 
(1.8) 

with the z-axis (Fig. 3). It is seen that (1, x) y 0 f n,‘4, hence tg2 (1 ,r) = - ctg26. 
Comparing with (1.8), we find 

a91 

We evaluate ctg20 
relationship 

by means of (1.7) and insert the result into (1.9). We then have the 

upon linearizing it we obtain 

(1.10) 

Integrating (1.10) in the zone OBC according to [I] yields 

(1.11) 

The constant of integration n is found from the condition that the rigid-plastic bound- 
ary passes through the origin. Inserting (1.11) into (1.5), we finally obtain for the zone 

OBC 

I - ?/ + 6/2k {(k - +) [f (s -t y) + (z --I- y) F, (o)] + c [hp, (0) --I- (1.12) 

(zi_y-hhfF,(zj-y)] -0 

Integrating (1.10) in the zone ABC, we obtain 

(1.131 

Here the constant of integration b cannot be determined from the condition that the 
rigid-plastic boundary passes throzgh the point P at which the material of the medium 
starts to buckle (Fig. la) since only the abscissa of this point zP == h, is known, but not 
its ordinate. In fact, every point with coordinates (h, h + I%), where h is an arbitrary 
real number, satisfies (1.3) of the buckling surface of the medium. Hence, we shall seek 
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the constant of integration b from the condition that the rigid-plastic boundary passes 
through the point of intersection N of this boundary with the line QN separating the 
plastic zones in the physical plane (Fig. la). We find the equation of the line QN as 
follows. In a zero-th approximation QN coincides with the line BC (Fig. 2) and is 

Fig. 1 Fig. 2 

described by the equation E - h = 0. Varying and going over to the z, y coordinates, 
we obtain the equation of the line QN 

iz+y-h+-tco(z--y)=O (1.14) 

The line QiV is a first family slip line (a -line), hence its differential equation is 

ay i ax = tge (1.15) 

Evaluating the derivative dy / dx by means of (1.14) and substituting the result into 
(1.15). we rewrite it as 

The relationship (1.9), taking account of (1.16), becomes 

Inserting the stress into (1.17) and linearizing, we obtain 

Integrating this relationship yields (A is the constant of integration) 

(1.16) 

(1.17) 

0 (q) = qF1(h) -t&-I)) J-1(77) + A 
I 

(1.19) 

Substituting (1.19) into (1.14) for the line QN we have 

Solving (1.1) and (1.3) jointly, we find the 

P Q L h t m (h), 

Substituting the coordinates of the point Q 

coordinates of the point Q (Fig. la) 

?/Q = YL = 6f (h) (1.21) 

from (1.21) into (1.20) for the line QN,. 
we find the value of the constant A. Then (1.20) for the line QN becomes 

~-t.~,--h~~~[kj(r-l/)i.36/(h)~i ik f ~+,t-h)t’~(h)- 
(1.22) 
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We find the coordinates of the point ,Y by solving (1.22) for the line QN jointly with 
(1.12) for the line ON (Fig. la) 

+ c) h [FL (0) - Fi (h)] - -$ [/ (h) --. hFl (h)] } 

of the rigid-plastic boundary can be found. According 

to (1.5) and (1.13) its equation is 

rc-yj $-[(k--++?,)F1(o)- (k++2h-r-Y)+2tLb] =o (1*24) 

Substituting the coordinates of the point N from (1.23) into (1.24), we find the value 
of the constant b, Then (1.24) for the line NP becomes 

(1.25) 

‘: i k_I- + j(2h-z--_)+ch F,(O) 
I 
LO 

Therefore, the rigid-plastic boundary is defined completely by the relationships (1.12) 

and (1.25), respectively, for the zones OBC and ABC. Setting z = h in (1.25), we find 
the ordinate of the point ZJ 

Yp = h + s If (h) + hF, (0)l (1.26) 

Let us note that by virtue of the incompressibility of the material of the medium, the 
areas of the curved figures OLB and PQL (Fig. la) should be equal. It is seen that this 
integral relationship is satisfied identically ; the total value of the mentioned areas 

turns out to equal 
6 Fl(‘Y il” i_ 8’3 (0) F4(0) _ 

- - 2! -g--h”+Fh”+... 
I 

Fig. S 

2. Let us consider a solid in the shape of a wedge. In this particular case the func- 
tion f in (1.1) is linear, and it becomes 

y = (tga).z (tga = 6F, (0)) (2.1) 

Here u is the half-angle of the wedge vertex (Fig. 4). According to Cl], the complete 
linearized solution is 

U = U0 + 6u”F, (O), V = 6u”F, (0) 

s, = h -I- 6F, (0) (.x - y), sy = BF, (0) (r - y) 

e, -= - cy - 8F, (O), eXy mu: 0 

ox z= 0, T Y 2&F, (O), ov m= - 2k - 2&F, (0) 

(2.2) 
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Let us note that each of the stresses is given by one formula in the whole plastic do- 
main. Moreover, the stresses are constant, therefore, the state of stress is homogeneous 
everywhere in the plastic domain. 

The equation of the buckling surface of the medium is 

5 - h = 6Fr (0) (h - y) (2.3) 

by virtue of (1.3) and (2.1). According to (1.12). (1.25) and (2.1). the rigid-plastic 

boundary is given by the equation 

z - Y + 6F1 (6) (5 + Y) = 6 (2.4) 

The relationships (2.3) and (2.4) show that the boundary of the buckling material and 
the rigid-plastic boundary are rectilinear (Fig. 4). The coordinates of the point N are P 

are found from (1.23), (1.26) and(2J).According to (1.21) and (2.1) the point Q has the 
coordinates 

ZQ = h + 6hF1 (O), y,Q = yL = 6hP, (0) 

According to (1.22) and (2.1) the line QN is 

s+y- h - 6F, (0) (I - y + h) = 0 

In the case of an ideally plastic medium, c .= 0 in all the formulas in Sect. 1. More- 

over, if the boundary of the solid is rectilinear, then all the formulas in Sect. 2, with the 
exception of the last formula for the stress o,, in (2.2), are valid for an ideally plastic 
medium since they do not contain the parameter c. The stress or, becomes 

o v==-2k (2.5) 

It is interesting to compare the solution obtained with the known solution of Hill, Lee 

and Tupper for the problem of impressing a wedge in an ideally plastic half-space @J. 
In particular, it is seen that a centered fan with its vertex angle B defined by the for- 

mula 2a = 6 + arccostg (n/4 - p/2) (2.6) 

is still located between the triangles PQN and OQN (Fig. 4). If the vertex angle 2cc of 
the wedge is small, as in the case considered here, then the vertex angle 6 of the fan is 

also small. It then follows from (2.6) that to higher order accuracy, the equality fl = 
2c.G is satisfied, which we rewrite as 

6 - 26”P?i (0) 

As is seen from (2.7), the fan appears only in the second approximation ; in the first 
approximation it degenerates into the line Q,V (Fig.4). 

Therefore, the geometric picture of impression of a wedge according to Hill agrees 
with that represented in Fig.4. The stress fields also agree in both cases. Regarding the 

velocity fields, they are identical to the accuracy of the reversal of the motion. 
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